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1. Introduction

Analysing natural images captured by moving robotic
platforms is a key point for yield monitoring at the plant
level [10]. In this context, convolutional neural models have
been widely used to automatically segment crop elements
based on their color and texture from RGB images [1], and
depth information can reduce the uncertainty of the segmen-
tation of objects having similar appearance [3]. However,
it is not clear what is the optimal way of fusing RGB and
depth information. Several works suggest that depth infor-
mation can help the segmentation of classes of close depth,
appearance and location [4]. On the contrary, it is better to
use only RGB information to recognize object classes con-
taining high variability of their depth values [4].

Despite the benefits of using RGB-D images for seg-
mentation in the agricultural setting, RGB-D cameras re-
main relatively expensive, posing a significant barrier to
their widespread adoption in agricultural applications. This
challenge could be faced by automatically estimating depth
information from RGB images. Currently, this task, known
as monocular depth estimation, is mainly tackled by means
of deep learning models able to understand the relationships
between objects in the scene and the corresponding depth
information [7, 11].

In this work, we aim to address two questions related
to the usage of depth information for the segmentation of
different elements in a vineyard. Namely, we first investi-
gate whether the fusion of RGB and depth data can enhance
the segmentation accuracy in viticulture compared to using
RGB data alone. Moreover, we investigate how segmenta-
tion models trained with RGB-D images behave when depth
information is automatically generated in order to mitigate
the reliance of specialized hardware.

2. Materials and methods
The dataset used in this work was acquired in a vineyard

in San Donaci (Italy) with an Intel Realsense D435 camera
mounted on a moving robot. The camera acquired lateral
views of the line of the grape plants at a distance of 0.8
to 1 m, see Figure 1(a). These images were taken at three
different times of the year (July, September and October).
The dataset consists of 265 RGB color images together
with the depth of each image in the RAW format. The im-
ages were manually annotated to produce the segmentation
masks with the regions corresponding to the grape bunches
and canopy, see Figure 1(b). The dataset was divided into a
training set (212 images) and a test set (54 images)1.

There are three versions of the dataset: RGB, RGB-D,
and RGB-D-generated. In the RGB version, the images of
the dataset were the RGB images. In the RGB-D version,
the information from RGB channels and depth channel was
combined as follows. The depth RAW images provide in-
formation about the depth of objects that are located up to
65 metres away; however, plants are located less than 3 me-
tres away; hence, the depth information related to objects
farther than 3 metres away was removed from the image.
Finally, such an image was combined with the RGB image
obtaining an RGB-A image with four channels where the
depth information is used as the alpha channel. In the last
version of the dataset (called RGB-D-generated), the im-
ages of the training set were generated by using the RGB-D
procedure. However, for the images of the test set, their
depth information was computed by means of the Dense
Prediction Transformer [6]; and, then, the RGB images and
the automatically generated depth images were combined.

1The dataset is available at the following webpage https://
github.com/joheras/ECSDVineyardDataset/

https://github.com/joheras/ECSDVineyardDataset/
https://github.com/joheras/ECSDVineyardDataset/
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Figure 1. (a) Original Image; (b) Mask; (c) Prediction with the best RGB model; (d) Prediction with the best RGB-D model; (e) Prediction
with the best RGB-D model where the depth of the original image was automatically generated.

From the training sets of the RGB and RGB-D datasets,
several deep-learning segmentation architectures were fine-
tuned [12]. Namely, the Unet++ architecture with a Ren-
Net50 backbone [13], the DeepLabV3 architecture with a
ResNext50 backbone [2], and the Manet architecture with
EfficientNetB3 and ResNest50 backbones [8] have been
employed. The models were trained thanks to the function-
ality of the FastAI library [5]. The code for training the
models is available at the project webpage. After training,
all the models were then evaluated on the corresponding test
set of 54 annotated images using the mean segmentation ac-
curacy of the c− th class (MSAc) [9].

3. Results and Discussion

The performance of the trained networks was first evalu-
ated using the RGB version of the dataset. If the segmenta-
tion networks are compared, Deeplab-Resnext showed bet-
ter overall MSA than the other networks. The Unet++-
ResNet50 model produced the best results for canopy seg-
mentation with an accuracy of 79.98, whereas the Deeplab-
Resnext model, with an accuracy of 94.46, outperformed
the others for segmenting grape bunches.

The RBG-D models improved up to a 4% the over-
all MSA of their RGB counterparts. For this dataset, the
best model was built using the Unet++ architecture, that
achieved a MSA of 81.91% for the canopy, of 95.83% for
grape bunches, and an overall MSA of 95.47%. This shows
the positive effect of adding the depth information to the
RGB image, since it allows the models to focus on the ob-
jects of interest, and discard elements of the background.

Finally, for the RGB-D-generated dataset, the overall
MSA of all the models improved up to 0.47%. Again,
the best results were achieved with the model built us-
ing the Unet++ architecture. Such a model obtained a
MSA of 96.09% for grape bunches (an improvement of

0.26% regarding the best previous model), and 86.54% for
canopy (an improvement of 4.6% regarding the best previ-
ous model). This improvement was due to the fact that au-
tomatically generated depth images provide a higher level
of detail at close distances than depth images captured with
the camera. Hence, in addition to removing regions that
are not relevant, images from the RGB-D-generated dataset
preserve some information discarded in the RGB-D images.

In addition to the raw numbers, several conclusions can
be draw from visually inspecting the results, see Figure 1.
As we can see in Figure 1(c), the best RGB segmentation
model finds where the leaves are but misses many of them;
for the grapes, such a model is not able to find them and
gets confused with the pole — this might happen due to the
similarity of colors. On the contrary, the RGB-D model, see
Figure 1(d), knows where the grapes are and can differenti-
ate the pole (this occurs because the model gains additional
information about the scene’s geometry and spatial relation-
ships), but mixes the leaves with the background. Finally,
when applied the RGB-D model to an image where depth is
automatically generated, see Figure 1(e), the model is per-
fectly capable of detecting where are the leaves and grapes.
As we have explained before, this happens because the gen-
erated depth image allows us to preserve some information
that is removed when the depth from the camera is used.

4. Conclusions and further work

In this work, depth information has been incorporated
for automatically segmenting vineyard images. The results
show the benefits of working with RGB-D images instead
of only using RGB images. Moreover, it has been shown
that it is possible to use RGB images as input for models
trained with RGB-D images. This is achieved by automat-
ically generating the depth information from RGB images
using a Dense Prediction Transformer (DPT) model.
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