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Traditional phenotypic measurements: time-consuming,
labor-intensive, prone to errors, and can harm plants. Con-
vergence of electronic engineering, computer image pro-
cessing, agronomy led to high-throughput crop phenotyping
tech. Drones, sensors, robots, remote control, image anal-
ysis used for crop monitoring [3]. However, complete, ac-
curate non-destructive phenotypic data acquisition remains
challenge.The primary task of phenotypic research based on
point cloud data is to obtain organ-scale point cloud data
from unordered point cloud data. Point cloud skeleton-
based instance segmentation more accurately extracts struc-
ture, topology, object shape , which makes it have better
performance and application potential in the instance seg-
mentation task of processing point cloud data[1].

Experiment in 2022 at Songjiang Experimental Station
(30°94’N, 121°13’E). Data collected after first maize plant-
ing week. Data gathered daily at 9:00 am, multi-view im-
ages, phenotypic data of 13 time points (July 19 - July 31)
from V2 to V6. Collected time series data from 7 maize
plants at 13 consecutive time points.

Used Laplacian contraction algorithm [2] for maize plant
skeleton extraction. Results shown in Figure 1(b) for maize
point cloud skeleton, node classification in Figure 1(c), seg-
mentation in Figure 1(d). Avg. distance of adjacent nodes
used as threshold, points within threshold grouped as same
organ around skeleton node. Organ segmentation shown
in Figure 1(e), remaining points after segmentation in Fig-
ure 1(g). Euclidean distance used to merge remaining points
with closest skeleton point, final organ segmentation in Fig-
ure 1(h).

Phenotypic parameters are extracted based on segmented
organ point clouds, as shown in Figure 2. Plant height (cm)
is the difference between max and min Z coordinates of
plant point cloud, as shown in Figure 2(d). Leaf length is
obtained by projecting the leaf along x, y, and z axes to
get max and min points in y-axis, x-axis, and z-axis. Eu-
clidean distance of shortest path between extreme points of
three projections is computed within undirected graph G.
The longest path is leaf length, as shown in Figure 2(a).
For leaf width, we find skeleton point at 1/2 leaf position,

(a) (b) (c) (d)

(h) (g) (f) (e)

Figure 1. Point cloud instance segmentation diagram. (a) Maize
plant point cloud (b) Maize plant skeleton (c) Maize plant skeleton
node recognition result (stem node – brown point, leaf tip node –
green point, connecting node – red point ) (d) Skeleton segmenta-
tion result (e) According to the skeleton coarse segmentation result
(f) Rough segmentation of stem and leaves point cloud (g) Rough
segmentation undivided points (h) Maize plant instance segmenta-
tion result

Point[i]. From Point[i], we construct vectors v⃗1 and v⃗2
towards Point[i − 1] and Point[i + 1]. Using vectors v⃗1
and v⃗2 as normal vectors and Point[i] as a point on the
cutting plane, we derive the equations S1 and S2 of the cut-
ting planes. Point between S1 and S2 is leaf width posi-
tion, longest path’s Euclidean distance is leaf width. Due
to sparse point cloud, move cutting planes upward along
normal vectors by 0.5 cm to ensure intersection. Leaf width
shown in Figure 2(b). Angle between z-axis and point at 1/4
leaf length is leaf inclination angle, shown in Figure 2(c).
Point O is intersection of leaf and stem skeleton, Point
M is z-axis point, Point N is skeleton point on leaf skele-
ton at 1/4 length from Point O intersection.

Linear regression analysis was used to evaluate the re-
lationship between the artificial measured values of pheno-
typic parameters and the extracted values of this research
method. The coefficient of determination (R2) and root
mean square error (RMSE) were used for quantitative
evaluation. The calculation is shown in Equation 1 and
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Figure 2. Point cloud instance segmentation diagram. (a) Maize
plant point cloud (b) Maize plant skeleton (c) Maize plant skeleton
node recognition result (stem node – brown point, leaf tip node –
green point, connecting node – red point ) (d) Skeleton segmenta-
tion result (e) According to the skeleton coarse segmentation result
(f) Rough segmentation of stem and leaves point cloud (g) Rough
segmentation undivided points (h) Maize plant instance segmenta-
tion result
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Figure 3. Fitting results of phenotypic prediction values and mea-
sured values of maize phenotypic parameters. (a) plant height (b)
leaf inclination angle (c) leaf length (d) leaf width

Equation 2.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(1)

RMSE =

√∑n
i=1(yi − ŷi)2

n
(2)

yi represents the i sample value, ŷi represents the model
prediction value of the i sample, ȳ represents the sample
average value, n represents the total number of samples.

The phenotypic parameter extraction values of the same
plant at 13 time nodes were compared with the manual mea-
sured values, and the fitting results are shown in Figure 3.
The comparison results showed that there was a high degree
of consistency between the plant height extraction value and
the measured value.

(a) (b) (c)

Maize plant on July 25th Maize plant on July 26th Maize plant on July 27th

Figure 4. Time series point cloud blade matching results. (a) maize
plant on July 25th (b) maize plant on July 26th ( The black box
above is the newly sprouted leaves, and the black box below is the
leaves that will fall off ) (c) maize plant on July 27th

( a )

( b )

Figure 5. Dynamic phenotypic parameters of maize plants. (a)
plant height (b) leaf length

By matching the skeleton nodes of adjacent time points,
organ matching of point clouds at different time points can
be achieved.To visualize temporal maize point cloud match-
ing results, we selected point clouds of same maize plant
over three days (July 25th-27th) for demo. Results shown
in Figure 4, same color = same leaf. July 25th: 6 leaves,
July 26th: 7 leaves, July 27th: 6 leaves. Figure 5 displays
the dynamic changes of plant height and leaf number from
July 19th to July 31st, consisting of 13 time points, leaves
numbered by growth order.

In Figure 4, new leaf on July 26th, one shed. In Fig-
ure 5(b), leaf 3’s data ends July 26th, leaf 7’s starts July
26th, showing match with growth. Overall plant height
rises, aligning with maize morphology. Observing leaf 1 in
Figure 5(b), initial length increase stabilizes, then gradually
decreases, matching maize leaf growth.
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