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1. Introduction

Leaf instance segmentation plays a crucial role in ob-
taining plant phenotypic parameters [1]. Utilizing three-
dimensional (3D) images allows for a higher level of de-
tail compared to two-dimensional (2D) images, making it
highly significant for plant phenotype extraction. This ab-
stract focuses on the research of lettuce, using 3D point
clouds as the primary data form.

At present, a large number of studies have implemented
leaf instance segmentation and counting based on tradi-
tional machine learning or deep learning algorithms [6, 4,
3, 5]. However, there are few unsupervised, adaptive and
simple instance segmentation algorithms for limited sam-
ple dataset. DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) is a density-based algorithm [2].
It is unsupervised and also can discover clusters of any ar-
bitrary shape and size in datasets containing even noise and
outliers. However, DBSCAN is sensitive to the parameters
of Eps and MinPts, so it is important to improve the algo-
rithm to achieve self-adaptation of the two parameters. In
this abstract, the idea of ANNA (Average Nearest Neigh-
bor Analysis) and mathematic expectation are introduced to
improve DBSCAN. It aims to achieve self-adaptation of the
two important parameters Eps and MinPts of DBSCAN.

2. Proposed Method

Eps and MinPts of DBSCAN were dynamically selected
according to the distribution characteristics of the lettuce
point cloud dataset, so that the improved algorithm could
better adapt to datasets with different densities and noise,
improve the accuracy of instance segmentation. In order to
improve the efficiency and accuracy of improved DBSCAN,
downsampling 3D point cloud data at first.

ANNA first calculated the distance between the target
point and its nearest neighbor point, and then acquired the
average of all these nearest neighbor distances in order to
reflect the density of the data. Therefore, the idea of ANNA
was introduced to improve DBSCAN in order to determine
Eps. The steps of the algorithm are as follows:

(1) Calculate the Euclidean distance from each point to

all other points in the 3D point cloud dataset and form the
distance matrix.

(2) Sort the calculated distance of each point.
(3) Calculate the average of distances with the same sort

number (K) as the value list of Eps. The K represents the
number of neighborhood points around the target point.

For the calculated list of Eps, traverse the distance matrix
to find out the points whose distance was less than Eps and
the mathematic expectation of the number of the points was
calculated, then MinPts list was acquired. The formula is
shown in formula (1). Pi represents the number of points
whose distance was less than Eps of point i, and n is the
number of point clouds in dataset.

MinPts =

n∑
i=1

1

n
× Pi (1)

3. Result and Discussion
Figure 1(a) and 1(b) showed the trend of Eps and MinPts

with changing K. The Eps and MinPts of different K were
input into DBSCAN to obtain the cluster number. When the
generated cluster number was the same for many times, the
cluster number was defined as the optimal clustering result,
and the two parameters corresponding to the maximum K
value in the stationary phase were used as the optimal pa-
rameters of DBSCAN. As shown in figure 1(c), when the
value of K was 8, the cluster number was 8, and the cluster-
ing result began to enter a stationary phase until the value
of K was 82. Therefore, the Eps and MinPts corresponding
to K=82 were taken as the optimal parameters.

The segmentation effect was evaluated by accuracy and
accuracy refers to the proportion of the correctly segmented
and total number of point clouds. The accuracy was shown
in Table 1. The accuracy of improved DBSCAN had been
greatly increased.

Visualize the point cloud instance segmentation results
in figure 2. When the number of leaves increased, DB-
SCAN had serious segmentation errors and more noise
points, and the segmentation accuracy could not be guar-
anteed. Because the improved DBSCAN found the optimal
parameters, the segmentation accuracy was higher and noise
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Figure 1. The trend of Eps, MinPts and Cluster number with K. (a) The values of Eps with different K. (b) The value of MinPts with
different K. (c) The value of cluster number with different Eps and MinPts corresponding to K.

Methods Average accuracy (%)
DBSCAN 80.91

Ours 91.80

Table 1. Comparison of DBSCAN and improved DBSCAN.

points were fewer. However, some parts of leaves were un-
divided when the occlusion was severe. On the whole, the
segmentation results were within the acceptable range.

(a)

(b)

(c)

Figure 2. Instance segmentation results of lettuce. (a) 3D point
cloud after downsampling. (b) Instance segmentation based on
DBSCAN. (c) Instance segmentation based on ours.

The results of segmentation were taken as the number of
leaves. As shown in figure 3(a), R2 of DBSCAN was 0.637,
and the correlation degree was weak. Figure 3(b) showed
that R2 of improved DBSCAN reached 0.940 with strong
correlation, indicating that improved DBSCAN could real-
ize leaf count of lettuce more accurately. Both MAE and
RMSE were smaller when using improved DBSCAN.

4. Conclusion
In this abstract, our research contributes to the field of in-

stance segmentation of lettuce leaves. We proposed an im-
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Figure 3. The correlation degree between the estimated leaf num-
ber and ground truth. (a) Estimated result based on DBSCAN. (b)
Estimated result based on ours.

proved DBSCAN algorithm for leaf instance segmentation,
incorporating the concepts of ANNA and mathematical ex-
pectation to determine the crucial parameters, namely Eps
and MinPts. By applying this algorithm, the accuracy of in-
stance segmentation significantly increased from 80.91% to
91.80%. Moreover, we achieved an R2 value of 0.940, in-
dicating a strong correlation between the ground truth and
the predicted leaf count. Our method provides valuable in-
sights for nondestructive phenotype acquisition in lettuce
research.
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