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1. Introduction

Plant disease management is vital for agriculture [2, 10,
7]. The use of deep learning, and in particular computer
vision models, is becoming increasingly common for the
detection of plant pathologies, but comes up against a ma-
jor problem: the lack of annotated data [5] which results
in model overfitting. In addition, when the presence or vi-
sual nature of anomalies is uncertain, it is difficult to use
learning-based methods to differentiate between normal and
abnormal images. To overcome this problem, a contrario
approaches have proved successful, in particular for locat-
ing anomalies in images [9]. These approaches, based on a
reference model representing normality, evaluate the prob-
ability of an observation being normal or abnormal [6, 1].

We present an a contrario method that exploits the heat
maps of an explicability model to detect the essential fea-
tures of an image. The model is trained to predict the age
of a cauliflower, and its heat maps are used to determine
whether an image is abnormal by comparing it with a ref-
erence distribution. The underlying assumption is that the
important characteristics of an abnormal plant differ from
those of a normal plant. Our method requires a sample of
normal images, without any assumptions about other po-
tential anomalies. For each new time series of images, a
cauliflower at different ages, we calculate a score by com-
paring the probability that the heatmaps of cauliflowers at
different ages match those of normal cauliflowers, and then
compare it to a predefined threshold.

2. Methodology

2.1. Problem definition

Let X = [x1, x2, ..., xT ] be a temporal series of T im-
ages of size (L × L) pixels. Our goal is to detect whether
X contains an anomaly using an a contrario approach
based on heatmaps obtained by an explainability model. To
achieve this, we train a predictive model on an auxiliary
task. We propose to apply an explainability model, Grad-

CAM [8] that highlights the important areas of the image
through heatmaps, indicating the regions that contributed to
the model’s prediction. We obtain the temporal series of
heatmaps H generated by Grad-CAM and calculate a score
S(H) to determine it contains an anomaly or not.

2.2. Score calculation

Heatmaps provide information about the areas of impor-
tance in images. We assume that these areas are different for
normal and abnormal observations. Our objective is then to
study the difference in distribution between an observation
and a reference distribution constructed from so-called nor-
mal images. To do this, we calculate a score which allows
us to assess for each observation the extent to which pixel
values differ from pixel values in images from the reference
distribution. As the value of a pixel is representative of its
importance in the image, comparing the heatmap to a ref-
erence distribution means comparing whether the image’s
areas of importance are the same as for the reference im-
ages, which are assumed to be normal.

Let H be a temporal series of T heatmaps, such that

H = [h1, h2, ..., hT ]

where each heatmap is a matrix ht(i,j) for i, j ∈ [1, L]2 and
t ∈ [1, T ] corresponding to the image xt.

We aim to calculate a score to determine if ht is abnor-
mal by estimating the probability that each pixel is drawn
from the pixel distribution obtained from heatmaps of nor-
mal images at time t of the image time series of the training
and validation datasets.

In other words, for an image of timestep t, for each pixel
ht(i,j) , we calculate the probability that it is drawn from the
reference distribution denoted

H̃t
(i,j) = [h̃t

1(i,j)
, h̃t

2(i,j)
, h̃t

3(i,j)
, ..., h̃t

n(i,j)
] ,

which represents the pixel values h̃t
(i,j) of n heatmaps ob-

tained from normal images at timestep t.



We compute A(ht), the average of the probabilities that
each pixel is drawn from the reference distribution of pixels
i, j at timestep t:

A(ht) =

∑L
i,j=1 P (ht(i,j) |H̃t

(i,j))

L2
. (1)

For each time series H of T heatmaps, we calculate a score
S(H):

S(H) =

∑T
t=1 A(ht)

T
, (2)

which represents the normality score of a heatmap time se-
ries. Please note that the score is not a probability, but rather
an arithmetic mean of probabilities.

2.3. Anomaly Detection

To detect anomalies, we set a threshold to which we
compare the score calculated for each new observation. The
score represents how closely the observation belongs to the
reference distribution. If the score is below the threshold,
indicating a significant deviation from expected distribu-
tions, the observation is considered as an anomaly. The
choice of threshold depends on the specific application and
the desired trade-off between false positives and false neg-
atives. Indeed, depending on the context, it may be con-
straining to predict that an observation is abnormal when
it is not (false positive), or inversely to miss an abnormal
observation by detecting it as normal (false negative).

3. Experiments and results
We are working with the GrowliFlower dataset [4],

which contains georeferenced time series based on drone
images of two cauliflower fields acquired in 2020 and 2021.
We use a subset of the dataset called GrowliflowerR, which
contains RGB orthophotos and phenotypic characteristics
(in-situ data) collected on 740 plants, including informa-
tion on whether cauliflowers are affected by a disease or de-
fect. For the purposes of this study, we consider all defects,
whatever their nature, to be anomalies. Our auxiliary task
is to perform age classification, defined by the difference in
days between the date the photo was taken and the date the
cauliflower was planted. Ages range from 1 to 93 days.

In this study, we trained a ResNet18 model [3] to predict
the age of cauliflowers. The model showed promising per-
formance on the test data, producing a mean square error
(MSE) of 30.76 and an R2 score of 0.95.

Once the age prediction model has been trained, we ap-
ply Grad-CAM to the predictions made by the model, high-
lighting areas of importance. We retrieve the heatmaps to
apply our anomaly detection method.

We collect all normal observations from the training and
validation datasets and define our age-based reference dis-
tributions. The dataset on which we aim to detect anoma-
lies includes the Test dataset, as well as all the abnormal

Figure 1. Score per observation. Red dots correspond to abnormal
observations (which have a comment in the in-situ data) and blue
dots are normal observations (with no comment in the in-situ data).

data from the Train and Validation datasets. We calculated
a score for each cauliflower using the method described in
Section 2 shown in Figure 1.

Our study is based on the hypothesis that the characteris-
tics of importance are not the same for normal and abnormal
cauliflowers, and that this information can be found in the
heatmaps obtained by Grad-CAM.

Our approach does not result in a constant number of
false alarms. However, we show that it is possible to set a
small threshold below which all observations are considered
anomalies (see s0 in Figure 1). This finding is important, as
it highlights the possibility of using a predefined threshold
to successfully identify a proportion of anomalies.

4. Conclusion

In this study, we proposed a decision-support model
for anomaly detection, applied to a time series dataset of
cauliflower images. The proposed model leverages spatial
information learned from an auxiliary task and does not re-
quires prior assumptions about the presence of anomalies
in the data. The only prerequisite is to have a sample of
healty data. The objective is to identify a subset of anoma-
lies (setting a low threshold to minimize the number of false
alarms), thereby assisting farmers in understanding plant
phenotyping based on a more or less trivial learning task.

In the dataset under study, the anomalies associated with
cauliflower do not exhibit temporal continuity. Conse-
quently, while our current work deals with time series of
images, we treat each image independently due to this lack
of continuous anomalies. In our future research, we want
to work with a dataset that exhibits continuous anomalies
from a certain time step t, and exploit the temporal aspect
of the images.
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