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The use of deep learning has received much attention in
the agricultural domain [1]. Within deep learning, semantic
segmentation plays an important role in accurately distin-
guishing class-specific pixels within agricultural images [2].
However, to achieve accurate segmentation performance,
the neural network must be trained on a significant num-
ber of annotated images, a process that is time-consuming
and expensive [3]. To address this challenge, active learning
has emerged as a promising approach to optimize the an-
notation process by actively selecting the most informative
images for annotation [4, 5]. Active learning has been ap-
plied on well-known public datasets such as Cityscapes, but
for agricultural datasets, the amount of research is limited.
This is unfortunate, because agricultural datasets have spe-
cific challenges, such as limited diversity and unbalanced
classes. The aim of this paper is to test whether active learn-
ing can be applied to non-diverse and unbalanced agricul-
tural datasets.

1. Active learning
Our proposed active learning framework is based on un-

certainty sampling (BALD) [6] and hybrid uncertainty sam-
pling (PowerBALD) [7]. Both methods select the images,
the semantic segmentation network is most uncertain about.
These images are assumed to contribute most to the per-
formance when retraining the segmentation network. In
this research, the uncertainty metrics were determined with
Monte-Carlo dropout [8]. With Monte-Carlo dropout, unla-
belled images are repeatedly passed through the neural net-
work in inference mode with dropout activated, thus pro-
ducing multiple segmentations for the same image. If the
outputs for the same image show large variation, this may
indicate that the model is uncertain about this image, mak-
ing it a candidate for selection and annotation.

In our experiments the Fully Convolutional HarDNet
(FCHarDNet) [9] was used as semantic segmentation

model. To perform active learning, a dropout layer was
added to the final convolutional layer of FCHarDNet. By
adding this dropout layer, Monte-Carlo iterations could be
performed. The number of Monte-Carlo iterations was set
to 20. We used the default training parameters of FCHarD-
Net when conducting the active learning.

2. Experiments
Active learning was tested on two datasets: Cityscapes

[10], and a proprietary dataset named Corn-Weed. The
dataset statistics are shown in Table 1.

Dataset Train Validation Test # of classes Majority class
Cityscapes 2975 500 1525 19 44.1% (road)
Corn-Weed 1190 (field A) 3 90.9% (background)

331 (field B) 117 (field B) - 3

Table 1: Dataset statistical summary, including number of classes
and pixel percentage of majority class.

The Cityscapes dataset [10] was used as a proof of con-
cept to test our active learning. Cityscapes can be catego-
rized as a diverse dataset, since the images were obtained
from 18 different cities with non-overlapping frames. Fur-
thermore, it consists of 19 classes, with the road class pre-
dominating with an average of 44% of pixels (Table 1). On
Cityscapes, we compared three active learning acquisition
functions: BALD, PowerBALD and Random selection. The
number of active learning sampling iterations was set to 10.
The initial dataset size was 59 images and the query size
was 26 images. These numbers were obtained from a simi-
lar experiment in literature [11].

Our second dataset was a proprietary Corn-Weed dataset
that consisted of 1638 images. The dataset consisted of two
parts: part A & part B. Part A contained 1190 images from
17 fields spread over 3 countries. Part B was of a newly
independent corn field and consisted of 448 images. In this
experiment, the active learning performance was evaluated



in an industrial application, meaning that a model was al-
ready trained on part A, but the performance of this model
had to be improved for the new unseen corn field B. The
question was which of the active learning acquisition func-
tions selected the images most efficiently. Therefore, we
made the comparison between BALD, PowerBALD and
Random. Field B was subdivided into a validation set of
117 images, and the remaining 331 images were used as
available images for active learning sampling (Table 1). The
experiment was done with three repetitions to validate the
stability of each acquisition function. The initial dataset size
was 1190 images and the query size was 10 images. The to-
tal number of active learning sampling iterations was 10.

(a) Input image (b) Ground truth annotation

Figure 1: Example image (a) and annotation (b) from Corn-
Weed dataset. In image (b), red=corn, purple=weed and trans-
parent=background.

3. Results
In Figure 2, the performance (mIoU) on the validation

dataset of Cityscapes is shown as a function of the num-
ber of training images. From this figure, both BALD and
PowerBALD have a higher mIoU than Random selection.
This difference is already visible after the first sampling it-
eration, after which it is almost constant for the remaining
iterations. In the last iteration, the mIoU value for BALD,
PowerBALD and Random was 0.38, 0.38 and 0.36 respec-
tively. The maximum mIoU of 0.36 when doing Random
selection, was achieved after sampling 225 images when
doing BALD and PowerBALD. This indicates that active
learning is improving annotation efficiency by having a sim-
ilar mIoU with 70 annotations less than Random sampling.

The result on the Corn-Weed dataset is shown in Fig-
ure 3. In the last iteration, the mIoU value for Random
was 0.68, while the mIoU for BALD and PowerBALD was
0.71 and 0.72, respectively. This indicates that PowerBALD
is performing best for active learning sampling. Addition-
ally, PowerBALD proved to be more stable than the other
methods, exhibiting lower variance across the active learn-
ing iterations, resulting in a significant different (p=0.01)
between PowerBALD and Random sampling. Similar to
Cityscapes, actie learning achieve the same mIoU than ran-
dom requiring 70 less images.

Figure 2: Validation performance (mIoU) as a function of the num-
ber of training images for BALD, PowerBALD, and Random on
the Cityscapes dataset.

Figure 3: Validation performances for BALD, PowerBALD and
Random acquisition on the Corn-Weed dataset. The transparent
colored areas around the solid lines represent the 95% confidence
interval for the three repetitions. The solid line is the average
mIoU over the three repetions.

4. Conclusions
Active learning focuses on optimizing neural networks

with fewer image annotations. For active learning on se-
mantic segmentation networks, Cityscapes is a frequently
used benchmark dataset. Because the Cityscapes dataset is
quite diverse and consists of many classes, it does not ac-
curately reflect active learning performance in agricultural
settings. In agriculture, datasets tend to contain more re-
dundant images and imbalanced classes. Therefore, in this
research the added value of active learning was tested on a
Corn-Weed dataset. Three acquisition functions were com-
pared: BALD, PowerBALD and Random. Both BALD and
PowerBALD outperformed Random sampling even when
90.9% of the pixels belonged to the background class. The
results between PowerBALD and Random were significant
showing that active learning can work in agriculture set-
tings.
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