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1. Introduction
Accurately identifying gaps within the crop field and fill-

ing them is a vital step in ensuring high crop yield [5, 17].
The conventional methods for detecting and filling the gaps
manually require significant time and effort [4]. To the
best of our knowledge, there is no standardized protocol
for detecting gaps within the corn crop in terms of sen-
sors and methods used. The methodology in this study inte-
grates UAV-based imaging and computer vision algorithms
for detecting corn plants, rows, and targeted gaps within the
rows, to accurately assess plant population and identify gaps
within the crop field [6, 7, 8, 12, 13, 14, 15, 16].

2. Methodology
We acquired 210 raw high-resolution RGB images of

the experimental corn field in the village of Srbobran, Ser-
bia, with the exact location of 45°34’25.9”N, 19°50’39.3”E,
spanning an area of 0.53 acres with 21 corn-sowed rows.
Images were captured in May 2021 with DJI Inspire 1 UAV
equipped with a Zenmuse X3 camera [20] from a height
of 15m, during the V4 (4-leaf) growth stage. Within this
stage corn plants developed four visible leaves and continue
to grow rapidly, so that the leaves become more developed
and structured. With the mission planning software UAV
was set up to capture images at 75% frontal lap and 65%
side lap which later resulted in a successfully created ortho-
mosaic of size 5,795 × 27,754 with ground sampling dis-
tance (GSD) of 0.9cm, using Pix4DMapper [10]. To estab-
lish ground truth data for plant population and gap anal-
ysis, a GPS location of every plant within the corn field
was manually obtained using ArcGIS software [11]. As
a result, 16,720 plants were manually marked within the
created RGB orthomosaic. Based on those marked plants
we obtained the distances between each consecutive plant
within a row. We further identified ground truth for 154
targeted gaps with a length ≥ 45cm, which is the minimal
length that provides potential space for reseeding additional
plants [9]. The created RGB orthomosaic was subjected to

a patch-based division, by incorporating an overlap of 20%
between adjacent patches to ensure comprehensive ucover-
age. Individual patches were created with dimensions of
240× 240 pixels and are further used for gap detection and
their length estimation. As a result, a total of 810 patches
were generated.

For corn plant detection three methods are tested on
whole corn field image (divided into 810 patches) as an ini-
tial step for gap detection: unsupervised based segmenta-
tion of the Visible Atmospherically Resistant Index (VARI)
map, template matching (TM), and a deep learning model
MaskRCNN [2, 3]. The VARI method uses an RGB im-
age to generate a map on the basis of greenness, so green
plants were detected by using a threshold of 0.6 for index
value and an area value close to an average plant area at this
stage (i.e., 0.4m2 to 0.6m2). In template matching [1], 5
templates of corn plants were randomly selected and a fast
normalized cross-correlation technique [19] was applied to
complete corn field. It was processed using a sliding search
window and a threshold value of 0.5 with the aim to find in-
stances of each of the templates in the image of corn field.
Plant detection results were finalized by compiling together
all of the plants detected by the templates. Furthermore,
MaskR-CNN R50-FPN model from [18] is trained using
two classes: corn plant and non-corn plant objects. The
non-corn plant objects encompassed various elements such
as weed plants, rocks, and machinery marks in the soil. To-
tal 21 images out of 810 images were used for training pur-
pose with total 588 masks for corn plant and 42 masks for
non-corn objects. We used 4,000 epochs with 2 images per
batch, with the learning rate set at 0.00025. Following the
training phase, the model performances were evaluated on
a complete georeferenced orthomosaic, using a threshold of
0.7 to detect plants.

After the first detection stage is complete, in the sec-
ond stage the rows were identified by linking centroids of
detected plants to their nearest neighbors, while ensuring
a maximum connection distance of less than the row gap,
typically 75cm. These resulting polylines, formed from the



Figure 1. The impact of mis-detected plants on the gap length estimation in the overall detection compared to ground truth

vertices of plant centroids, were extended to intersect with
neighboring polylines within the same row, facilitating the
connection of sequential edges exclusively within the row.
The outermost points of each row were then utilized to gen-
erate a continuous straight line, which serves to delineate
the plants located within interrow spacing. Furthermore,
these established row lines served the purpose of grouping
plants within each row, enabling connections between cen-
troids of adjacent plants solely within the same row. These
connecting polylines, constructed using plant centroid ver-
tices, represent the actual gaps between successive plants
within the row. With detected polylines within each row,
any polyline with a length exceeding the expected spacing
between two corn plants (∼ 45cm) was identified as a tar-
geted gap line. These lines served as a foundation for iden-
tifying specific areas within the corn field that required gap
filling, indicating the available space for reseeding during
the germination stage that enhance overall yield optimiza-
tion.

3. Results

We used four metrics for a qualitative evaluation of the
corn detection model: Accuracy, Recall, Precision, and
F1-score, while for the qualitative evaluation of the pro-
posed targeted gap detection, we used the mean square error
(MSE) for the estimated length of correctly detected gaps.

From the presented results in Table 1, we can see that
template matching detection and unsupervised segmenta-

tion of VARI index map showed much lower performances
compared to MaskR-CNN R50-FPN model. Unsatisfactory
results with these two methods are caused by falsely detect-
ing weeds and grassland as corn plants. This misclassifica-
tion undermines the reliability and usefulness of the VARI
index map, as it fails to provide an accurate representation
of the distribution and density of the corn plants. On the
other hand, the main drawback of the template matching ap-
proach is the high-computational complexity, especially in
scenarios where a comprehensive analysis of a large number
of plants is required.

Table 1. Plant detection results of the competing methods

Metrics VARI TM MaskRCNN
Accuracy 0.61 0.52 0.96
Recall 0.66 0.55 0.97
Precision 0.88 0.91 0.99
F1 score 0.76 0.69 0.98

In this part, we are focusing on 154 targeted gaps with at
least 45cm in length. The average length of targeted gaps
within the formed data set is 56cm. The MaskR-CNN based
model, as the best-performing model for plant detection,
followed by a procedure for targeted gap detection, cor-
rectly detects 122 gaps. The MSE in estimating the length
of those gaps is 1.4cm. Figure 1 illustrates the influence
of mis-detected plants on overall targeted gap length esti-



mation error. Four distinct cases were observed: 1) cor-
rectly detected and accurately estimated gap length, 2) cor-
rectly detected gap with imprecise length, attributed to a
mis-detected plant, 3) the gap was not detected due to a
false positive detected plant, resulting in the omission of
the existing gap, and 4) false positive detected gap aris-
ing from the prior detection’s oversight of two plants. The
observed instances of mis-detected gaps were primarily at-
tributed to the failure in detecting plants during the prior
detection stage. Consequently, in order to achieve satisfac-
tory results in targeted gap detection, it is critical for the
plant detection algorithm to exhibit the highest possible pre-
cision.

4. Conclusion
This study focused on the detection of targeted gaps in

corn fields and their length estimation. The extracted infor-
mation provides valuable insights for identifying areas in
the corn field that required reseeding during the germina-
tion stage. Achieved results by the proposed method offer
significant advantages over traditional methods, including
improved accuracy and faster data acquisition.
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