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1. Introduction

Researchers have studied the links between root traits
and root function for the purposes of phenotyping and guid-
ing plant choices in agriculture [8, 13]. A high-priority task
is identifying genotypes and characteristics of high-yield,
stress-tolerant crops that can sustain the projected needs of
10 billion people by 2050 [21]. Studies have ranged across
multiple plants such as cassava [9], maize [24], chicory[19],
soybean [20], and many other plants [22]. Phenotypic traits
such as root length, volume, surface area, and count are uti-
lized as features to understand the functions of roots. A
couple works have also related certain physical root char-
acteristics to genotypes that have better drought resilience
[9, 12]. However, the above red-green-blue (RGB) studies
provide an incomplete view of a plant’s root physiology and
root function.

Current methods of acquiring root traits are either de-
structive or non-destructive. Destructive methods include
digging up plants from their original placement to image
in 2D or 3D settings [10, 12]. A common non-destructive
method is the use of minirhizotrons (MRs) [8, 13, 22]. An
alternative to MRs is the rhizotron or rhizobox method that
involves growing plants within boxes made of clear mate-
rial so that root traits may be monitored over multiple time
steps [2, 14, 18]. Other methods include tomography scans,
X-rays, and MRIs to see beneath the soil surface [23].

Besides the last three listed non-destructive imaging
techniques, each of the above uses RGB imaging to infer
root function. However, the physical characteristics of root
length, volume, surface area, and count lack a complete
view of a plant’s status and connection with the rhizosphere.

Studying spectral, phenotypic properties invisible to the
naked eye can provide more information on a plant’s in-
teractions aboveground, such as plant leaf spectra studies
[17]. Belowground, studies have examined near-infrared
(NIR) images and hyperspectral imaging (HSI) [1, 15] to

improve root component classification and root phenotyp-
ing. Nonetheless, we were unable to find publicly available
visible-NIR or HSI plant root datasets that would allow fur-
ther investigation into the relationship between root spectra
and its surrounding rhizosphere.

2. Dataset
Here we present the Hyperspectral Plant Root Imagery

dataset (HyperPRI), the first available dataset of RGB and
HSI data for in situ, non-destructive plant root analysis. Hy-
perPRI covers peanut (Arachis hypogaea) and sweet corn
(Zea mays) plants and contains fully-annotated masks for
root and soil pixels, as well as occasional peanut nodules
and pegs. During data acquisition, we imaged 64 boxes
between the wavelengths of 400 and 1000 nm for up to
15 timesteps across two months to enable insights into dy-
namic root growth. Within this monitoring period, most of
the plants go through a natural dehydration and rewater-
ing process (ie. some were in a control group) to provide
samples for studying drought resilience of the two species.
Thus, HyperPRI contains hyperspectral (HS) images over
time that can reveal a deeper understanding of the relation-
ship between plant roots and fluctuations in the surrounding
rhizosphere. A sample of the timeline and HS bands for
peanut images are shown in Figure 1.

HyperPRI is a unique and valuable resource for studying
plant root systems. The added hyperspectral bands enhance
data quality by effectively removing artifacts, ensuring reli-
able data for analysis. With 64 rhizoboxes representing rep-
etitions of peanut and sweet corn plants, HyperPRI ensures
reproducible and robust research. The dataset also presents
machine learning (ML) experts with multiple challenges in
root segmentation. Thin root features, with widths as nar-
row as 1-3 pixels, require robust algorithms for accurate
identification and segmentation. Additionally, the dataset’s
highly textured soil background prompts exploration of tex-



Figure 1. RGB images and hyperspectral reflectance distributions for root and soil pixels from our dataset. The images shown (left) are from
a single peanut plant rhizobox across the monitoring time period. Hyperspectral reflectance data (right) is compiled from approximately
60 images of peanut rhizoboxes.

ture analysis techniques. Dealing with highly correlated hy-
perspectral channels, wherein reflectance differences are re-
duced due to high-resolution spectral data, demands innova-
tive approaches to handle the correlated information effec-
tively. By addressing these specific challenges, ML experts
can not only advance root segmentation but also contribute
to solving segmentation problems with similar characteris-
tics in various domains, ranging from medical imaging [11]
to remote sensing applications [22]. This dataset’s combi-
nation of temporal aspects, hyperspectral information, and
challenging features makes it an ideal dataset for advanc-
ing root science and developing accurate root segmentation
algorithms.

3. Strengths and Limitations

In addition to the aforementioned applications, Hyper-
PRI may be applied to multiple plant science research tasks.
One would be to utilize HS signatures to supplement exist-
ing root phenotypic traits with more in-depth physiological
evaluation ([4], Root Phenotyping). A couple studies have
shown improved phenotyping prediction through added HS
information [1, 16]. Researchers may also use the data to
analyze roots from seedling to maturity by monitoring root
growth, architecture, and turnover of root systems [6, 7].
Some images contain other potential objects of interest such
as fungus, mold, and algae and could be studied at their var-
ious timesteps to determine possible interactive dynamics
between root and rhizosphere. By example, previous work
has studied root-fungal relationships in peatland [5]. The
additional HSI data can provide researchers with a more in-
formative look at a plant’s health and physiology and may
be applied to drought resiliency and nutrient concentration
studies. By taking advantage of the dehydration and re-
hydration process in our dataset, researchers could predict
plant water status in response to drought for two annual crop

species [9, 24]. Creating additional links between HSI data
and a plant’s health could enhance studies addressing mi-
cronutrient deficiencies in populations worldwide [3].

Despite its many strengths, there are certain limitations
to consider when using HyperPRI. The dataset primarily
captures root images from rhizoboxes and do not fully rep-
resent root systems’ complexities in natural soil environ-
ments. Neither do the HS images allow researchers to make
conclusions about aboveground plant-air interactions. Con-
sequently, generalizing findings to field conditions would
require additional evaluation and caution. Moreover, Hy-
perPRI includes only two annual crop species and is lim-
ited in its applicability to other plant species with differ-
ent root characteristics. Finally, while the dataset provides
HS information, it does not cover the entire electromagnetic
spectrum, which could affect some spectral analysis appli-
cations.

4. Conclusion

The HyperPRI dataset holds immense potential for ad-
vancing research in plant root-rhizosphere interactions, root
function, and ML-based root segmentation. Its temporal
and hyperspectral aspects along with the availability of an-
notated masks offer numerous opportunities for exploration
and innovation in various fields. Researchers interested in
using the dataset should be mindful of the dataset’s limi-
tations and carefully interpret results, especially when ex-
trapolating findings to natural soil environments or other
plant species. With proper analysis, the HyperPRI dataset
can significantly contribute to enhancing our understanding
of root systems and their interactions, furthering advance-
ments in both root research and machine learning tech-
niques.
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