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Abstract

The CVPPA 2023 challenge seeks innovative methods to
identify nutrient deficiencies in winter wheat and winter rye
using RGB images captured by Unmanned Aerial Vehicles.
In this study, our team, named as SWAT, which comprises
members from the German Aerospace Center and the Tech-
nical University of Munich, has developed a pipeline that
relies on soft vegetation indices extracted from RGB images,
as well as a modified vision transformer called ViT-hybrid,
for the purpose of nutrient deficiency detection. With our
approach, we achieved an accuracy rate of 91.9% for de-
tecting nutrient deficiencies in both winter rye and winter
wheat. This performance secured us the second position in
the winter rye category and the fourth position in the winter
wheat category on the public leaderboard of the challenge.

1. Introduction

Food security, a global imperative, faces escalating
threats. Altered weather patterns, extreme events, and ris-
ing temperatures disrupt crop yields and strain food supplies
[1]. Concurrently, nutrient deficiencies in plants exacerbate
the malnutrition crisis, compromising human health. Ad-
dressing these challenges, require a timely assessment of
soil and crop conditions to minimize significant losses at
the end of the season and safeguard food quality. Machine
learning-driven plant phenotyping emerges as a pivotal so-
lution. By harnessing artificial intelligence and advanced
imaging techniques, it enables precise monitoring of plant
growth, stress responses, and nutrient uptake. This data-
driven approach can facilitate the understanding of com-
plex relationships between crops and their environment to
improve nutrient use efficiency.

Symptoms of nutrient deficiency are not always conspic-
uous until later stages of plant growth. Subsequently, nu-
trient deficiency types can be visually similar and not eas-
ily distinguishable. Thus, on-site surveillance of fertilizer
treatment can be inefficient and impractical to scale.

Machine learning has been applied to several agriculture
use cases including plant disease detection, crop classifica-
tion and leaf segmentation. Nutrient deficiency detection
in various crops have been tackled successfully using com-
puter vision giving a general idea of its potential. [5] ap-
plied convolutional neural networks to recognise NPK defi-
ciencies in sugar beets from RGB images. Their experimen-
tal results achieved an accuracy of 98% using Dense-Net .
[4] detect graduation color of okra leaves as a proxy of nu-
trient deficiency using Inception ResNet-v2. An accuracy
of 96% for training and 86% on test set was realised.

In this paper, we present our solution to the CVPPA 2023
challenge which aims to solve on-site nutrient deficiency
recognition in UAV-based RGB images. Seven types of de-
ficiency are targeted. Our solution applies several data en-
gineering and augmentation techniques and deep learning
method to aid the recognition process. Section 2 describes
the dataset provided. We detail the data processing strate-
gies and our experimental setup in Section 3. In Section 4,
we evaluate the performance of the proposed architecture
and compare our findings with those obtained from vari-
ous classical machine learning algorithms. Our findings are
summarised in Section 5.

2. Dataset

The dataset provided in the competition is the DND-
Diko-WWWR dataset; a UAV-collected RGB images over
an experimental site in Dikopshof, Germany. A total num-
ber of 3600 samples are available, distributed evenly for



winter wheat (harvested in 2020) and winter rye (har-
vested in 2021). The images are taken at several dates for
seven soil and nutrient status namely unfertilized, PKCa,
N KCa, NP Ca, NPK , NPKCa, and NPKCa+m+.

N, P, K, Ca denotes nitrogen, phosphorus, potassium,
and lime nutrients and ’ ’ signifies the exclusion of a partic-
ular nutrient in the fertilization plan. Supplementary appli-
cation of mineral fertilizer and farmyard manure are repre-
sented by m and s respectively.

3. Experimental Framework
During our experiments, we employed two distinct

pipelines: one grounded in classical machine learning
(ML) principles and the other rooted in deep learning (DL)
methodologies. In the subsequent sections, we will detail
the specifics of each pipeline.

3.1. Data Processing

3.1.1 Feature Extraction

In the ML pipeline, we conducted feature extraction from
our dataset. We employed a grid search to optimize indi-
vidual features separately. Subsequently, we amalgamated
feature groups to identify the most promising combination
among them. The following feature groups were consid-
ered:

1. Histogram of soft vegetation indices:

(a) Visible Atmospherically Resistant Index (VARI):

VARI =
Green − Red

Green + Red − Blue
(1)

(b) Green-Red Vegetation Index (GRVI):

GRVI =
Green
Red

(2)

(c) Modified Green-Red Vegetation Index (MGRVI):

MGRVI =
2× Green − Red − Blue
2× Green + Red + Blue

(3)

(d) Triangular Vegetation Index (TVI):

TVI =
√

(NIR− Red)(NIR− Green)(NIR− Blue)
(4)

(e) Excess Green Index (ExG):

ExG = 2× Green − Red − Blue (5)

(f) Excess Green minus Excess Red (ExGR):

ExGR = 3× Green − 2.4× Red − Blue (6)

2. Color moments: channel mean, variance, skewness,

3. Histogram of oriented gradients,

4. Daisy feature descriptor,

5. Local binary patterns,

6. Gabor features,

7. Haralick features,

8. Histogram of channel entropies,

9. Histogram of Fast Fourier Transform,

10. Histogram of Wavelet Transform,

On the other hand, in the DL approach, rather than ex-
tracting histograms, we directly obtained soft vegetation in-
dices and binary thresholded images using the Otsu method,
along with the real part of Fast Fourier Transform (FFT)
as auxiliary channels. Among these auxiliary channels,
three were randomly selected to compose false-color chan-
nels alongside the original RGB channel, resulting in a 6-
channel input for training and validation.

3.1.2 Data Augmentation

For data augmentation, we employed two strategies appli-
cable to both the classical ML and DL pipelines:

• Approach-1: Training two separate models for the
WW2020 and WR2021 datasets, respectively.

• Approach-2: Training a single model using combined
WW2020 and WR2021 data.

In addition, for the DL pipeline, we applied several augmen-
tation techniques, including mixup learning, random rota-
tion, random flipping, and extraction of sub-patches from
the original image. We then aggregated the model’s deci-
sions on these patches through majority voting or weighted
summation.

3.2. Models

In our experimental setup, we harnessed the following
ML techniques, Random Forest (RF), Support Vector Ma-
chines (SVM), and Light GBM. Conversely, in the DL do-
main, we leveraged the ViT-hybrid [2], and ConvNext [3]
models. Notably, due to our augmented data containing a
total of 6 channels in the DL approach, we horizontally ex-
panded the chosen backbone model, with one branch pro-
cessing the original RGB inputs and another handling the
false RGB inputs. The embeddings from these branches
were concatenated and jointly forwarded into the fully con-
nected layers for subsequent classification, as illustrated in
the Figure 1.

In the case of classical ML methodologies, the model
was crafted using scikit-learn. However, in the DL ap-
proaches, PyTorch was employed, and the models were ini-
tialized utilizing pretrained weights sourced from the Ima-
genet dataset through the HuggingFace repository.



Figure 1. Deep Learning Pipeline processing true RGB and false RGB channels (namely soft vegetation indices) together.

3.3. Evaluation metrics

In our evaluation, we employed the following metrics to
assess the performance of our models:

Focal Loss = −α · (1− pt)
γ · log(pt) (7)

Where: α is the balancing parameter, pt is the predicted
probability of the true class, and γ is a tunable focusing
parameter.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(8)

These metrics were employed to quantitatively evaluate
the performance of our models.

4. Results and Discussion
In this section, we discuss the results obtained through

different approaches and augmentation techniques for de-
tecting nutrient deficiencies in winter wheat and winter rye.
Table 1 summarizes the achieved results.

Among the classical ML techniques, for nutrient defi-
ciency detection in winter wheat and winter rye from UAV-
based RGB images, SVM and RF delivered reasonable per-
formance, achieving accuracy scores of 66.5% and 70.0%,
respectively, when trained on separate datasets. In contrast,
when trained on a combined dataset, we observed a sub-
stantial improvement, as seen in the RF and Light GBM
results, achieving accuracies of 77.9% and 80.1%, respec-
tively. On the other hand, DL approaches appear to out-
perform classical ML approaches. In particular, ViT-hybrid

Table 1. Applied methodologies and the achieved results.
Approach Augmentation Accuracy on the

Leaderboard (%)WR+ WW
together

WR+ WW
separate

Sub-cropping and
majority voting size

Support Vector Machines ✓ 1 66.5%

Random Forest ✓ 1 70.0%

Random Forest ✓ 1 77.9%

Light GBM ✓ 1 80.1%

ConvNext-tiny ✓ 1 73.1%

ConvNext-tiny ✓ 1 78.4%

ViT-hybrid ✓ 1 75.7%

ViT-hybrid ✓ 1 83.5%

ViT-hybrid ✓ 5 87.7%

ViT-hybrid ✓ 11 91.9%

emerged as the top-performing model, especially when aug-
mented with sub-cropping and majority voting, showcas-
ing its potential for nutrient deficiency detection in winter
wheat and winter rye from UAV-based RGB images. Fur-
ther optimization and experimentation may provide oppor-
tunities for even higher accuracy.

5. Conclusion
In this manuscript, we present our solution to the CVPPA

2023 challenge, which aimed to address on-site nutrient de-
ficiency recognition in UAV-based RGB images. Our so-
lution applied several data engineering and augmentation
techniques, as well as deep learning methods, to enhance
the recognition process. Our findings highlight the scala-
bility and adaptability of ViT-hybrid when augmented with
sub-cropping, establishing it as one of the top-performing
approaches among all the submissions considered for this
challenge. The accompanying codebase for our experi-
ments is also available upon request; interested parties may
contact the corresponding authors for access to the codes.
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