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Abstract

This technical report provides an overview of our so-
lution submitted to the 8th Workshop on Computer Vi-
sion in Plant Phenotyping and Agriculture (CVPPA) at the
IEEE/CVF International Conference of Computer Vision
(ICCV) 2023 for image classification. Effective plant phe-
notyping is of utmost importance to support the sustain-
ability of our planet and its inhabitants. The involvement
of strong community structures and computer vision scien-
tists in this field is now more critical than ever. We utilized
the mmpretrain framework for image training and experi-
mented with various models, including ResNet, ViT, Swin
Transformer v1, and Swin Transformer v2. Ultimately, we
fine-tuned the Swin v2 model. Locally, we divided the pro-
vided dataset (trainval) into training and validation sets to
obtain output results for different models. We selected the
model that performed the best on the validation set, then re-
trained it on all training set images and conducted inference
for submission. In the end, our model achieved an average
top-1 accuracy of 93.3% on two datasets.

1. Introduction

In recent years, significant progress has been made in
the fields of computer vision and machine learning, funda-
mentally transforming various domains, including agricul-
ture and plant phenotyping. The capability to automatically
analyze and classify visual data holds the promise of greatly
enhancing our understanding of crop health and yield. One
crucial aspect is the detection of nutrient deficiencies in
crops, which can have far-reaching implications for agri-
cultural output and food security.

This technical report aims to provide an overview of our
image classification solutions submitted to the 8th Work-
shop on Computer Vision in Plant Phenotyping and Agri-
culture (CVPPA) at the IEEE/CVF International Confer-
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ence on Computer Vision (ICCV) 2023. The primary ob-
jective of this challenge is to employ computer vision tech-
niques to classify nutrient deficiencies in winter wheat and
winter rye, utilizing a carefully curated dataset known as
DND-Diko-WWWR. This dataset comprises 3,600 RGB
images captured by unmanned aerial vehicles (UAVs) and
offers a unique opportunity to explore the impact of nutri-
ent variations on crop health.

Our approach is based on the mmpretrain framework
and is aimed at addressing nutrient deficiencies in winter
wheat and winter rye through the training of image classifi-
cation models. In the process, we explored several different
model architectures, including ResNet, ViT, Swin Trans-
former V1, and Swin Transformer V2, among others. Ulti-
mately, we conducted detailed parameter tuning on the Swin
Transformer V2 model and locally partitioned the provided
dataset (trainval) into training and validation sets to evaluate
the performance of each model.

During the model selection phase, we chose the model
that performed best on the validation set and further fine-
tuned it using the entire training dataset for inference and
generating the final classification results. Our ultimate
model achieved impressive results, averaging a top-1 accu-
racy of 93.3% across both datasets, providing a robust solu-
tion for addressing nutrient deficiencies in winter wheat and
winter rye.

2. Dataset
DND-Diko-WWWR[6] is a UAV-based RGB dataset

specifically curated for the classification of nutrient defi-
ciencies in winter wheat and winter rye within the context of
a long-term fertilizer experiment. This dataset is character-
ized by its precision and relevance, as it offers image-level
labels that facilitate the accurate identification of nutrient
deficiencies in these crops.

One notable feature of the DND-Diko-WWWR dataset
is its exceptional class balance, ensuring an equal distri-
bution of samples across different nutrient deficiency cat-
egories. This balance enhances the dataset’s suitability for
training machine learning models, as it mitigates the risk of



Figure 1.

biases that can arise from imbalanced class distributions.
Additionally, the dataset exhibits a remarkable absence

of discernible noise or spurious images, further contribut-
ing to its quality and reliability. This absence of noise en-
sures that the dataset maintains a high signal-to-noise ratio,
allowing us in the competition to focus on the core task of
nutrient deficiency classification without the interference of
irrelevant or erroneous data points.

3. Method

3.1. Mainstream Method

VGG: VGG[5] is a classic convolutional neural network ar-
chitecture primarily used for image classification tasks. Its
hallmark is its depth, consisting of multiple convolutional
and pooling layers. VGG’s simplicity and ease of repro-
ducibility make it an attractive choice, and its deep struc-
ture aids in learning intricate features. However, its large
model size, substantial parameter count, and slower train-
ing and inference speeds make it less competitive compared
to newer models in terms of performance.
ResNet (Residual Networks): ResNet[2], short for Resid-
ual Networks, stands as a seminal deep convolutional neural
network architecture widely employed in tasks like image
classification, object detection, and semantic segmentation.
It uniquely addresses the vanishing gradient problem by in-
troducing residual connections, enabling the construction of
exceptionally deep networks. Its advantages lie in its ability
to capture complex features and its ease of training.
ViT (Vision Transformer): Vision Transformer, or ViT[1],
is a novel image classification model based on self-attention
mechanisms that partition images into smaller patches and
employ self-attention to capture both global and local in-
formation. ViT has demonstrated exceptional performance
in various visual tasks, including image classification and

object detection. Its advantages include a straightforward
model architecture, adaptability to different image resolu-
tions, and excellent performance when trained on large-
scale datasets. Nevertheless, ViT may not perform as well
on smaller datasets and incurs higher computational and
memory costs.
Swin Transformer: Swin Transformer[4] is an emerg-
ing self-attention model designed for image classification
and object detection tasks. It introduces windowed at-
tention mechanisms to reduce computational complexity
while maintaining strong performance across multiple vi-
sual tasks. Swin Transformer’s strengths include versatility
across different vision tasks, efficient windowed attention
for reduced computational demands, and overall strong per-
formance.
Swinv2 (Swin Transformer Version 2): Swinv2[3], an im-
proved version of Swin Transformer, continues to excel in
image classification and object detection tasks. It inherits
the strengths of its predecessor, offering even better perfor-
mance and generalization capabilities.
Our Method Our image classification task is conducted
using the MMPretrain framework. We have explored vari-
ous relevant models and methods, and ultimately chose the
Swin Transformer v2 model as the approach for submis-
sion, as shown in the figure 2. During training, we utilized
the model’s associated pre-trained model with 1k images.

3.2. Data Augmentation

Data augmentation is a widely employed technique in
deep learning, primarily utilized to enhance model perfor-
mance by expanding the training dataset and enhancing the
model’s generalization capabilities. The data augmentation
techniques we employ are described as follows.
Mixup:[8] For each iteration, we randomly select two ex-
amples, denoted as (xi, yi) and (xj , yj). We then construct
a new example through a weighted linear interpolation of
these two instances:

x̂ = λxi + (1− λ)xj

ŷ = λyi + (1− λ)yj
(1)

where λ is a random number chosen from the interval [0, 1].
CutMix:[7] CutMix is primarily employed to increase the
diversity of the training dataset, thereby enhancing model
performance and generalization capability.

CutMix operates as follows: During each training itera-
tion, two random samples, denoted as (xi, yi) and (xj , yj),
are first selected. Subsequently, a new sample is constructed
through a weighted linear interpolation of these two sam-
ples:

x̂ = M ⊙ xi + (1−M)⊙ xj

ŷ = λyi + (1− λ)yj
(2)

Here, λ is a random number chosen from the interval [0, 1],
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Figure 2. Network Structure

Table 1. Training Details for Image Classification Networks Based on MMretrain

Model Model Size Neck Window size Pretrain Img size Top-1 acc1(WW) Top-1 acc(WR)

resnet resnet50 LinearClsHead - in1k 224×224 68.91 90.26
resnet resnet50 LinearClsHead - in1k 896×896 77.53 88.39
swinv1 small LinearClsHead 7 in1k 224×224 52.43 61.80
swinv1 small LinearClsHead 7 in1k 896×896 85.39 94.76
swinv1 small LinearClsHead 28 in1k 896×896 87.64 94.38
swinv1 base LinearClsHead 7 in1k 896×896 89.51 94.76
swinv1 small ArcFaceClsHead 7 in1k 896×896 80.90 91.01
swinv2 small LinearClsHead 8 in1k(w8) 224×224 34.83 41.57
swinv2 small LinearClsHead 4 in1k(w8) 896×896 88.02 95.51
swinv2 small LinearClsHead 8 in1k(w8) 896×896 92.88 97.38
swinv2 small LinearClsHead 28 in1k(w8) 896×896 93.26 97.75
swinv2 base LinearClsHead 8 in1k(w8) 896×896 93.26 98.13

1 Select the result that performs best on the validation set in the last 5 epochs of training

and M is a binary mask used to determine which parts come
from xi and which come from xj .

The core idea behind CutMix is to blend two samples
together, increasing the diversity of the data and helping
the model better understand relationships between differ-
ent regions. This reduces the model’s reliance on local
features, improves its generalization performance, and ef-
fectively mitigates overfitting issues. By introducing Cut-
Mix, we encourage the model to adapt better to varying data
distributions during training, resulting in improved perfor-
mance across various applications.

3.3. Loss

We use LabelSmooth Loss to compute the loss. La-
belSmooth Loss is a loss function used in deep learning,
typically used in conjunction with Label Smoothing to im-
prove model training and generalization performance.

The definition of LabelSmooth Loss is as follows:

− 1

N

N∑
i=1

[
α · log

(
efyi∑
j e

fj

)
+ (1− α) · 1

K

∑
k

efk

]
(3)

where N is the number of samples in a batch, K represents

the total number of categories in a classification problem,
and α is a hyperparameter ranging between 0 and 1. fi
denotes the model’s output for the i-th sample.

The key idea behind LabelSmooth Loss is to incorporate
the concept of label smoothing into the loss function to re-
duce the model’s confidence in its predictions for each sam-
ple. This encourages the model to be more cautious about
each category during training, avoiding excessive confi-
dence in one class and, thus, improving the model’s gen-
eralization performance.

By introducing LabelSmooth Loss, we better constrain
the model’s outputs to adapt to various uncertainties, en-
hancing the model’s robustness in various applications.
This approach is commonly used for classification problems
and can be combined with other regularization techniques
as needed to achieve better results.

4. Experiment
The DND-Diko-WWWR dataset contains 7 categories

both for WW2020 and WR2021. Following the guidelines
of the challenge, we use top-1 accuracy to evaluate the clas-
sification results on each dataset(WW2020 or WR2021).

In our local experiments, we split the given training set



(trainval) into a training set and a validation set using an
80-20 ratio. Training details are provided in the table 1.
The reported top-1 accuracy here represents the best perfor-
mance achieved by the model on the validation set during
the last 5 epochs of training. For the final submission, we
trained on all the images within the given training set and
then submitted the inference results.

During inference, we employed the TTA (Test Time
Augmentation) technique. In addition to conventional data
augmentation techniques such as VerticalFlip, Horizon-
talFlip, and Fivecrop, we also found that refraining from
applying data augmentation on lighting and contrast (Im-
ageEnhance.Brightness, ImageEnhance.Contrast) yielded
improvements in inference performance.

5. Conclusion
Our approach involved training image models using the

mmpretrain framework, where we explored different mod-
els such as ResNet, ViT, Swin Transformer v1, and Swin
Transformer v2. Fine-tuning was performed on the Swin v2
model. Locally, we divided the provided dataset (trainval)
into training and validation sets to obtain output results for
various models. We selected the model that exhibited the
best performance on the validation set and then conducted
retraining on the entire training dataset, followed by infer-
ence for submission.

Our model achieved a top-1 accuracy of 94.9% on the
WW2020 dataset and a top-1 accuracy of 91.7% on the
WR2021 dataset. This outcome underscores the potential
of computer vision in addressing the critical challenges of
plant phenotyping and agriculture, and we remain commit-
ted to exploring further advancements.
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