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Abstract

Advancements in machine vision that enable detailed in-
ferences to be made from images have the potential to trans-
form many sectors. Precision agriculture is one such appli-
cation area. By detecting weeds and inferring crop growth
via leaf counts, interventions can be applied only where
they are needed. This enables farmers to maximise their
yields while limiting resource use. In this work, we pro-
pose a hierarchical panoptic segmentation method to ex-
tract crop, weed and leaf instances from images. We adapt
Mask2Former, a state-of-the-art architecture for panoptic
segmentation, to predict both plant and leaf masks. Our
best model achieves a PQ† of 76.78, and a PQ of 71.95
and 66.31 on crop and leaf instances respectively. Addi-
tionally, weeds are segmented with an IoU of 69.49*.

1. Introduction
Demand for food is growing as the global population

increases. Farmers are now required to meet this demand
whilst simultaneously reducing the environmental impact
of their operations. All the while, climate changes is mak-
ing growing conditions more unpredictable leading to new
challenges in providing a reliable supply of food.

Precision agriculture aims to leverage data and machine
learning to help farmers make more informed decisions. An
area where this has notable influence is precision weed man-
agement. Farmers can reduce their herbicide usage by first
detecting, and then only targeting weeds, rather than spray-
ing the entire field with herbicide. Furthermore, crop mon-
itoring, another subdomain of precision agriculture, can in-
dicate where fertiliser should be targeted for healthy plant
growth. Various phenotypic traits can be used as indicators
of crop growth but in this paper we use leaf count.

The paper aims to combine crop and weed segmentation
as well as leaf segmentation masks in a single hierarchical
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panoptic segmentation architecture. Our approach employs
the latest state-of-the-art panoptic segmentation architecture
and improves upon existing baselines.

2. RELATED WORK

Earlier implementations of deep networks for crop and
weed semantic segmentation [7] used SegNet [2]. Seg-
Net employs an encoder-decoder structure, where the en-
coder extracts hierarchical features from input images,
and the decoder produces pixel-wise segmentation masks.
DeepLabV3+ improves on the performance of encoder-
decoder segmentation architectures by adding atrous con-
volutions to capture larger spatial context [3]. Later ap-
proaches utilised U-Net [14], which employs skip con-
nections, outperformed DeepLabv3+ in plant segmentation
[18].

Beyond classifying the pixels, instance segmentation us-
ing Mask R-CNN made it possible to distinguish between
individual crop and weed plants [11]. Mask R-CNN [8]
combines pixel-level semantic segmentation with object
bounding box predictions to produce instance segmentation.
This approach can be applied to many panoptic segmenta-
tion problems as well. Panoptic-DeepLab [4] builds on an
adapted version of DeepLabV3+, adding instance segmen-
tation segmentation heads, to make it suitable for instance
segmentation and panoptic segmentation. Mask2Former
[5], and it’s predecessor MaskFormer [6], propose an ap-
proach to instance segmentation that differs from the per-
pixel approaches proposed before. Instead, images are par-
titioned into a number of regions, represented with binary
masks, then each of these is assigned a class.

Adjacent to the problem of identifying individual plant
instances is the identification of individual leaf instances
within each plant instance. In [16] it was demonstrated that
each plant and its leaves could be identified from images,
containing multiple plants, taken under real field conditions.
Subsequently, the tasks of crop and weed segmentation with
leaf instance segmentation were combined in [12]. In [12],
a second decoder is added to the ERFNet [13] so that one
decoder produces plant masks and classes while the other
produces leaf masks.

In this paper we explore whether the quality of segmenta-
tion of crops, weeds and leaves can be improved by adapting
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state-of-the-art segmentation architecture, Mask2Former.
Similar to [12], our approach utilises two decoders: one for
generating plant masks and one for generating leaf masks.

3. METHODOLOGY
3.1. Mask2Former

Our approach adapts the Mask2Former [5] architecture.
The original Mask2Former architecture is shown in Figure
1 and consists of the following:

Backbone. The backbone extracts low-level image fea-
tures FCF×H

S ×W
S ∈ R from an input image of size H×W ,

where CF is the number of channels and S is the stride.
Pixel decoder. The pixel decoder gradually upsamples

the low-level features to produce a feature pyramid with lay-
ers that are of resolution 1/32, 1/16 and 1/8. At each stage
in the upsampling process, a per-pixel embedding is created
ϵpixel ∈ RCϵ×H×W , where Cϵ is the embedding dimen-
sion. In this implementation, the advanced multi-scale de-
formable attention Transformer, MSDeformAttn [17] is used
as the pixel decoder.

Transformer decoder. The transformer decoder con-
sists of 3 transformer layers for each layer of the fea-
ture pyramid. Therefore, given there are 3 layers in the
feature pyramid, there are 9 transformer decoder layers.
Each transformer decoder layer consists of a self-attention
layer, a cross-attention layer and a feed-forward network.
Query features are associating with the positional embed-
dings produced by the pixel decoder. These query features
are learnable and thus updated by each layer of the net-
work. The transformer outputs N per-segment embeddings,
QCQ×N ∈ R, where N is the number of queries and CQ

is the dimension that encodes global information about the
segment.

Figure 1: Original Mask2Former architecture.

Segmentation Module The segmentation module trans-
forms the output of the transformer Q into masks and class
predictions. To acquire class probability predictions {pi ∈
∆K}Ni=1, a linear classifier and softmax activation are ap-

plied to the output. There is an additional no-object class
which applies where the embedding does not correspond to
any region. To generate the masks, a multi-layer percep-
tron converts the per-segment embeddings from the trans-
former into N mask embeddings ϵmask ∈ RCϵ×N . Lastly,
binary masks mi ∈ [0, 1]H×W are formed via the dot prod-
uct of the mask embeddings, ϵmask, and per-pixel embed-
dings, ϵpixel, followed by a sigmoid activation mi[h,w] =
sigmoid(ϵmask[:, i]

T · ϵpixel[:, h, w]).

Figure 2: Adapted Mask2Former architecture with separate
transformer decoders for plants and leaves.

3.2. Separate Transformer Decoders for Plants and
Leaves

We use separate plant and leaf transformer decoders be-
cause we thought the network might learn better how to seg-
ment at the plant-level versus at the leaf-level. Each trans-
former decoder takes its own set of learnable query features
and each produces N per-segment embeddings Qplant and
Qleaf , respectively. Each segmentation module takes the
output of each transformer decoder, Qplant and Qleaf , and
forms two sets of class predictions {pplanti ∈ ∆Kplant}Ni=1

and {pleafi ∈ ∆Kleaf }Ni=1 for plants and leaves, respec-
tively. Additionally, separate mask embeddings ϵplantmask ∈
RCϵXN and ϵleafmask ∈ RCϵXN are generated via separate
multi-layer perceptrons. Each of these, combined with the
pixel embedding ϵpixel using the dot product would pro-
duce the two sets of binary mask predictions: mplant

i ∈
[0, 1]H×W and mleaf

i ∈ [0, 1]H×W using the same ap-
proach described in 3.1.

3.3. Loss Function

As in Mask2Former, the mask loss is calculated using
the sum of the binary cross entropy loss and dice loss:

Lmask = Lce + Ldice (1)

The mask loss and class loss is calculated for both the
plants and leaves, respectively. The total loss is calculates



as a weighted sum of the classification and mask loss of the
plants and leaves:

L = λclsL
p
cls + λmaskL

p
mask + λclsL

l
cls + λmaskL

l
mask (2)

where Lp and Ll are the losses for the plants and leaves
respectively. The weights for each of the losses were set to
λmask = 2.5 and λcls = 1.0.

3.4. Skip Connections

Skip connections are added to connect the output of the
first and second feature levels of the plant transformer with
the leaf transformer. These skip connections are inspired by
those in [12] and aim to share information about the plant
location from the plant decoder with the leaf decoder.

4. EXPERIMENTS
4.1. Dataset

Our approach was tested against the PhenoBench dataset
[15]. It consists of RGB images of sugarbeet crops and
weeds taken from a UAV. These images were annotated on
three levels: first plants, weeds and soil was semantically
segmented, second plant (crop and weed) instances were
segmented, and finally each leaf instance of the sugarbeet
crops was segmented. The training set contains 1407 im-
ages, the validation set contains 772 images and the test set
contains 693 images. Since this work was completed as part
of the CVPPA@ICCV’23: Hierarchical Panoptic Segmen-
tation of Crops and Weeds competition [1] the test set is
hidden at time of publication. Therefore, our work is ab-
lated against the validation set and the only the final results
against the test set. Further details about the dataset collec-
tion and annotation process can be found in [15].

4.2. Model and Training

As well as ResNet-50 [9], we chose use the Swin trans-
former [10] as the backbone because this has shown state-
of-the-art accuracy in image classification. We trained two
sizes of Swin model: a smaller model with Swin-S as the
backbone and 100 object queries, and a larger model with
Swin-L and 200 object queries. The learning rate for both
was set to 0.00001. Each model was trained for a maximum
of 85 epochs.

4.3. Evaluation

As in [15], panoptic quality is used to assess the pre-
dicted masks of crops PQcrop and leaves PQleaf . The
average over these values is reported as PQ. During eval-
uation, plant or leaf instances where less than 50% of it’s
pixels are within the image, do not affect the score, since
these are regarded as uninformative. Additionally, the IoU
is calculated for the “stuff” categories: weeds IoUweed and
soil IoUsoil. The metric PQ† is the average over PQcrop,
PQleaf , IoUweed and IoUsoil.

5. RESULTS
The results for each model on validation set are presented

in Table 1. The best of these results was submitted to be
tested against the hidden test set and these results are pre-
sented in Table 2.

6. DISCUSSION
Mask2Former combines state-of-the-art semantic seg-

mentation and instance segmentation and since our results
show that our model was strong in both semantic segmenta-
tion and instance segmentation these demonstrate the ben-
efit of this approach. IoUsoil is close to perfect at 99.45,

Table 1: Ablations on the validation set

Backbone Epochs Mask Threshold Skip Connections PQ† PQ PQcrop PQleaf IoUweed IoUsoil

ResNet-50 63 0.8 No 76.12 68.53 73.6 63.45 68.05 99.38
ResNet-50 63 0.8 Yes 76.65 69.16 74.36 63.97 68.88 99.38

Swin S 63 0.5 Yes 78.42 70.14 76.92 63.35 73.98 99.42
Swin S 63 0.8 No 78.8 71.21 76.4 66.01 73.37 99.41
Swin S 85 0.5 Yes 79.03 71.36 77.66 65.06 73.98 99.43
Swin S 85 0.8 Yes 78.95 71.2 77.34 65.06 73.98 99.43
Swin S 85 0.8 No 79.18 71.73 77.3 66.17 73.8 99.43

Swin L IN21K 63 0.5 Yes 80.34 73.33 78.06 68.6 75.26 99.45
Swin L IN21K 63 0.8 Yes 80.26 73.16 75.26 68.6 75.26 99.45
Swin L IN21K 85 0.8 Yes 79.89 72.32 77.93 66.71 75.46 99.45

Table 2: Results from our model on hidden test set compared to results published in [16]

Model PQ† PQ PQcrop PQleaf IoUweed IoUsoil

Mask2Former - - - 57.50 - -
HAPT [12] 65.27 50.73 54.61 46.84 61.11 98.50

Ours (Swin S, no skips, MT=0.5) 75.78 67.71 71.56 63.86 68.37 99.35
Ours (Swin L IN21K, with skips, MT=0.5) 76.78 69.13 71.95 66.31 69.49 99.36



however, the IoUweed is much lower at 75.26. PQcrop was
78.06 and PQleaf was lower at 68.6. Compared to crops,
leaves are harder to segment and this could be becuase they
smaller and more prone to occlusion. Additionally, weeds,
compared with crops, present a greater degree of intra-class
variation as well as often being smaller, making them more
challenging to segment. The overall PQ† for both models
exceeded existing baselines in [15].

The Swin models show a clear advantage compared to
ResNet-50 but there only a small difference of around 1%
between Swin S and Swin L. Given the hardware require-
ments to run the larger Swin model, and the small difference
in accuracy, the Swin S model might be more appropriate
for some applications.

While skip connections do, in some cases, seem to show
an improvement, the improvement is not reliable. It might
be that there is a more optimal placement of these connec-
tions or that they are simply not required.

During inference, mask are only predicted the associated
confidence is higher than a given threshold. We found that
reducing the mask threshold to 0.5 from 0.8 generally im-
proved performance.

7. CONCLUSIONS

Overall, this work demonstrates the potential of archi-
tectures like Mask2Former to solve the visual recognition
challenges within precision agriculture. In future work, we
would like to investigate how to reduce the size of the pro-
posed model while retaining its accuracy.
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